

Bailey Method for Achieving Volumetrics and HMA Compactability

Aggregate Blending

Trial and *Error*?

- Specification Bands
 - Coarse
 - Medium
 - Fine
- Which blend is best?
- How will a gradation change affect Volumetric Properties
- Is there a more systematical way to calculate changes?

The Bailey Method

- Originally developed by Robert D. Bailey
 - The Bailey Method was developed by Bob Bailey in the early 1980's.
 - He retired as a civil engineer, who worked with the Illinois DOT, District 5 Materials Bureau for over 35 years
 - Research and Development of the Method has been continued by the Heritage Research Group of Indianapolis

What is the Bailey Method?

The Bailey Method will

- Evaluate aggregate packing characteristics
- Determine what is "Coarse" and "Fine"
- Evaluate individual aggregates
- Combined blend by VOLUME and by weight
- Estimate Air void and VMA changes due to gradation.

Aggregate Packing

What Influences the Results?

• Gradation

- continuously-graded, gap-graded, etc.
- Shape
 - flat & elongated, cubical, round
- Surface Texture (micro-texture)
 - smooth, rough
- Type & Amount of Compactive Effort - static pressure, impact or shearing
- Strength

Principle #1 - P.C.S.

Principle #1 - P.C.S.

Primary Control Sieve

Mixture NMPS	NMPS x 0.22	Primary Control Sieve
37.5mm	8.250mm	9.5mm
25.0mm	5.500mm	4.75mm
19.0mm	4.180mm	4.75mm
12.5mm	2.750mm	2.36mm
9.5mm	2.090mm	2.36mm
4.75mm	1.045mm	1.18mm

PCS determines the **break** between **Coarse** and **Fine** in the combined blend <u>and</u> if a **given** aggregate is a **CA** or **FA**

The Main Principles

Sieve Size (mm) Raised to 0.45 Power

Defining "Coarse" and "Fine"

- "Coarse" fraction
 - Larger particles that create voids
- "Fine" fraction
 - Smaller particles that fill voids
- Estimate void size
 - Using Nominal Maximum Particle Size (NMPS)
- Break between "Coarse" and "Fine"
 - Primary Control Sieve (PCS)

Bailey Method Mix Types

The Bailey Method defines the mix type by volume of CA in the mix.

- NO compactive effort
- **Start** of particle-to-particle contact
- Determine **LUW**
 - Kg/m³ or lbs./ft³
- Determine volume of voids

<u>Rodded Unit Weight - CA & FA</u>

- With compactive effort
 - 3 layers
 - Rodded 25 times each
- Increased particle-to-particle contact
- Determine **RUW**
 - Kg/m³ or lbs./ft³
- Determine **volume** of **voids**

- CA Volume < LUW
- Little to No particle-toparticle contact of CA
- Fine fraction carries most of the load

Coarse-Graded Mixes

- **CA** Volume \approx LUW
- **Some** particle-toparticle contact of **CA**
- Coarse <u>and</u> Fine fractions carry load

- CA Volume > RUW
- Coarse fraction carries the load
- Remaining voids filled with mastic
 - FA, mineral filler, fibers
 & asphalt cement

Evaluating Blended Aggregate

ASPHALT INSTITUTE

- Fine Agg. Coars⁵⁰ Ratio (FA_c)
- Fine Agg Fine Ratio (FA_f)

Coarse-Graded & Fine Graded Mixes Rules-of-thumb or ratios

Amount and Direction for each 1% Change in VMA

- **1. %PCS** = \pm 1% VMA
- 2. CA Ratio
- 3. FA_c Ratio
- = ± 1% VMA = ± 1% VMA
- 4. FA_f Ratio = ± 1% VMA

Evaluating Mix Designs

HRG Blending Spreadsheets

HRG Basic Voids Estimating Sheets

12.5 F-G Basic Estimating VMA and Voids 11172006B											
Sample	Mix Design	1	2	3	4	5	6	7	8	9	10
Date											
iden trication											
19.0m m											
12.5mm											
3.5mm											
4.75mm											
2.36m m											
1. 18m m											
0.600 mm											
0.300 mm											
0.150 mm											
0.075 mm											
% AC Abando	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Actual VMA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ac tual Volds											
CA											
FAc											
FAT											
New CA											
New Hac											
Unginal PCs											
New Fac	Compares										
Total	compares	<u> </u>									
Est VMA	Each										
ActVMA	Sampleto										
Diff in VMA	the Mix										
Est Volds	Design										
ACTIVOIDS											
UIT IN VOIDS											
Diginal PCS											
New FAc	Compares										
Total	Each										
Est VMA	Sample to		İ	İ	İ	1	İ				
Act VMA	the										
Diff in VMA	Device										
Est Volds	Previous										
Act Vold :	Sample										
Diff in Voids											
Original Ext Pta											
Orig PCS Gib											
6.00 Gmb1											
New CA Gmb2											
New FAc Ava											
0.050 Gmm 1											
New FAc Dip Gmm 2											
0.500 Avg											
Welder VMA											
New FALDER Gas	0.000	0.0 00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACVolume EffAC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
					Page 1 of	1					

AI Blend 4 & 6

•		Blend 4	Blend 6
•	25-mm	100%	100%
•	19-mm	98.7%	98.2%
•	12.5-mm	89.9%	86.4%
•	9.5-mm	74.4%	71.0%
•	4.75-mm	38.4%	38.8%
•	2.36-mm	23.0%	25.1%
•	1.18-mm	15.7%	17.7%
•	0.6-mm	11.2%	12.6%
•	0.3-mm	7.8%	7.8%
•	0.15-mm	5.9%	5.3%
•	0.075-mm	1 5.2%	4.6%

Sieve size (raised to 0.45 power)

	Blend 4	Blend 6
%Binder	4.7%	4.7%
Air Voids	3.7%	5.7%
VMA	13.5%	15.3%
Est. Binder @4% Air Voids	4.6%	5.4%
Est. VMA	13.5%	15.0%

The Bailey Method

Scheduled Courses

- Introductory Course
 - 1 Day
 - 6 of 8 Hosted by SAPA
- Main Course
 - 3 Days
 - Lexington
 - IAPA
- Advance Course
 - 2 Days
 - Lexington
 - Graduates with one year experience
- Bill Pine Heritage Research

The Bailey Method

- "To sum it all up in numbers, last year we lost around \$250,000 in deducts for Voids, VMA, and Compaction. This year, using the Bailey Method, we are up \$300,000 in incentives. To make this an even greater accomplishment, we achieved this on half of the incentive jobs we had last year."
 - Graduate of the 3-day Bailey Course

ASPHALT INSTITUTE www.asphaltinstitute.org H. Wayne Jones, PE Columbus, OH wjones@asphaltinstitute.org